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NOMENCLATURE

(x,y) , (x' ,y') , (r,e) = rectangular and polar coordinates, respectively.

z = x+iy=re , complex variable.
t k ejk = components of the stress and strain tensors,
• e-k respectively.

T kUb k  = components of the surface traction, displacement

and body force vectors, respectively.

txx,t xy,tyy = rectangular stress components.

u u rectangular displacement components.

2a = crack dimension.

a= crack inclination.

k = applied load biaxiality ratio, t (lu)/ty (t ) .

- = uniform stress applied to the outer boundary surface.

= elastic shear modulus.

E = Young's elastic modulus.

V = Poisson's ratio.

K M =(3-v)/(l+v) for plane stress, (3-4v) for plane strain.

y = surface density per unit area.

U = elastic strain energy density per unit thickness.

w = work of forces applied to the body.

P,V = the potential energy of the system and the elastic

potential energy, respectively.

p = surface energy.

R = bound region of the x-y plane.

-. = closed boundary curves of R.

- holomorphic functions of the complex variable z.
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ON THE FRACTURE STRESS FOR THE INCLINED
CRACK UNDER BIAXIAL LOAD

1. Introduction

The significance of load biaxiality for fracture was investigated

initially for the horizontal crack [1], and then for the inclined crack

[2]. Attention in each of these studies was confined to analysis of the

local region enclosing the crack-tip. Calculation of the critical (frac-

ture) stress under biaxial applied load, in which the Griffith crack

instability hypothesis was utilized, then followed for the horizontal

single crack and for horizontally oriented collinear cracks [3,4]. A

similar type of calculation was also performed for the so-called 'shear

panel' [5].

In this paper the value of the tensile vertical load necessary to

fracture a biaxially loaded plane infinite sheet (in plane stress or plane

strain) with an inclined crack is determined using the Griffith fracture

criterion. The infinite plane geometry is used initially as a prototype

enabling analytical demonstration of the qualitative features of the

problem as, for example, the interplay of the dependence of the critical

tensile load, c, on the load biaxiality, the crack orientation and the

Poisson ratio for the material.

A similar calculation for a for a plane body having finite dimensions

and an inclined central crack using the finite element method, is to

follow for comparative purposes.

Experimental data from several biaxial load fracture test programs,

[6-9], using horizontally oriented cracks, encompassing three different

kinds of structural materials, are summarized here. This data provides

some measure of corroboration of the qualitative features of the dependence

of the critical tensile load upon the load biaxiality and the material

Poisson ratio as indicated by the prototype analysis.

Manuscript approved October 3, 1986.
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2. Analytical Solution

The stress boundary conditions of the plane infinite cracked-body shown

in Fig. 1 are, relative to the (x'-y') coordinate system,

t - a t' = k , t' - 0 as IzI- , (2.1)yy xCC xy

whereas relative to the (x-y) coordinate system they become

1 1t xx M V(1+k) Y(l-k) cos2a

y - + (l-k)cos2a as Iz- (2.2)

1
t, - v(l-k) sin2a

Along the interior crack border

t yy (x,o) - t (x,O) 0o , < jai (2.3)

As a problem of plane linear elasticity, the formal unique solution

of the boundary value problem posed by Fig. 1 is expressed in terms of the

following sectionally holomorphic functions of the complex variable
ie

z - x+iy = re [i10,

Clz

(z) 2 c
(z -a (2.4)

~ClZ
,$ , Z(Z) -+ C 22_(z -a)

where

C1 - (1-e 2 ia)+k(l+e21 c)& E.(l+k) - I(l-k) [cos2a +i sin2a]

(2.5)

C2  -(lk)e
2 ia -a(l-k)[cos2a +isin2a]

2i 4
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Needed in the sequel are the integrals of 4 (z) and I(z), (expressed to

within negligible arbitrary complex constants that contribute only to rigid

body displacements),

p(Z) - (z)dz= C( -_a 2 - 2 z

(2.6)

y2) Q(z)dz -C I(z -_a)2 + C2 z

Also needed is the notational convention for conjugation of arguments of

functions, values of functions and, also, of their derivatives. Thus if

z-x -iy and

'z)=f (X,y) +if2 (X,-y)

then

i(Z) =f 1 (x, -y) + if 2 (x,-y)

-pz *(z) -f I x, -Y) if 2(x,-y) (2.7)

d- d~ Y

To(z dlb - T =

The stress and displacement components are determined from the solution

expressions (2.4)-(2.6) by set of relations

t xx-itx O(Z) +Q(Z)+(Z-Z>)'(Z) (2.8)

2u(u x+ iu ) ' K(Z) ) - (z-z,) (Z)

~~~~~~~ y.........



It will be more convenient to have expressions (21.8) in the following un-

coupled form:

t yy- Re( D(z) I+2y im(V'(z) ]+ Reb2(z)]

tXY= -2yRe[V (Z) + imb5(z) 1- Im( (Z)] (2.9)

Expressions (2.4)-(2.6), together with equations (2.9), are sufficient to

determine uniquely the stress and displacement fields at every interior

point of the biaxially loaded infinite cracked-bd aigtegoer

illustrated by Fig. 1.

-A4

Al.P



3. Power Series Representation of the Stress and Displacement Fields

Needed for the subsequent calculation of the elastic strain energy of

the body are the power series representations for the stress and displace-

ment components. Consequently the analytic functions D(z), V'(z), .2(7),

.Q(z), O(z) and w(z) appearing in the uncoupled stress-displacement equations

(2.9) are expanded about the origin as power (Taylor) series as follows.

For (a/IzI) <1,

]~ '4z 6 (c -. )+.... ..

+ a 15a 6VW() -C1  + _m

2~ + .. ..

z z1z "
Q(z) = (C+C2)z + .(A) "'

(3.1) r

- j.L.(a')2 +3(a)4 5a6 +
4(z = (CI+C2 ) + + +

1~ ~ i= 21=4 2 z -I6( !)+ - 1

(Z)- 1 6

<z> < < :- 2 2 +-t) + -L(2 ....
W(Z) = ( (2

After conversion into the polar coordinates (r,e), the series (3.1) when

substituted into Eqs. (2.9) produce the following series expressions for

the stress and displacements in the large, i.e., for all points (r,3) for

which r >a.

5



R R

4 (C~ cos46 +3sinesin56) -CI(3sin~cos5e)] +C(A) 6

X 3(C 1-C2) 1 (+ 2) + () Cl(cos29 - 2sinesin3e)+C1 (2sin2e+2sin~cos3e)]

+ A (CRj 
6 (3.2)

+ (.)4r~.~cos46-3sin~sin56)+CIQ-! sin46 + 3sinecos5e)] C

tx -2 12 [C (2sinesin3e -cos2e) +C R(2sinecos36)]

+ (-l[C (3sin~sin.56 -- o 6 +C R(3sinecos56)] Ca6
\r/ 1 c4 48)r

and

2-.u \ 2 cose +sinesin2e) c s-nG+incsl>

+ L Ccos36 +-! sinesin4e> - cK() sin36 +-- sinecos4&1)

+C L f(K-i) (14k) rcose + 2(1-k) r~cosI.cosa +sin~sin2a)~

(3.3)
/(1-K) + c R/(i-hc)sie-ncoel2uiu [C cos8 -sin~sin2O 1 2  si8-sn>o~>

1ar)4 \ C 2 . 1  2~

+ 1 C 8/,< C/lK cos36 - si.nesin,.- sin3e -- sinecos~,

+C L-(14-k) (K-1) rsine +-! (1-k) [rcos~sin2a - rsinecos2oc]

In these equations

(C1 C9 R a (14-k);(csR- ~ 14k -a1k]o~

(CC(1+) R -j(14k +C (1k) (1ks2s~

6
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4. Griffith Crack Instability Criterion

The criterion for crack instability, or fracture, introduced by

Griffith [ 9,i] requires that at the onset of fracture, meaning here

rapid crack propagation, the potential energy of the system, P, must

acquire a stationary (maximum) value. The necessary condition that this

be so is

d=0 (4.1)
da

For a body with elastic material behavior, the total potential energy of

the system consists of the crack surface energy, 1, and the elastic poten-

tial energy, V. The latter is the difference between the elastic strain

energy, U, and the work (energy) of the applied boundary tractions and

body force in bringing the body to its deformed equilibrium configuration.

Thus

P V + r ,(4.2)

where

V - 2!tjkejkdV -(I T kukdA + bkUkd , j,k=1,2,3. (4.3)

R R

The Tk are the traction components applied over the surface S bounding

the region R of the body, which is also subject to the body force compon-

ents b,. The uk are the displacement components. The linear elastic strain

energy of the deformed body is

U 1 aedV . (4.4)
f2 -j k-jk

R

where t and e are the stress and infinitesimal strain components,

respectively.

7
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An application of Clapeyron's theorem [121, which states that

TkukdA + bkukdV = 2U , (4.5)

. S R

I..- allows the potential energy of the system to be expressed equivalently as

P = 7 - U (4.6)

The condition for onset of fracture thus becomes

d (r-U) = 0 (4.7)

Since Griffith assumes that the crack surface energy is equal to the crack-

surface area multiplied by a constant surface energy density, y, applica-

tio~n of the fracture criterion (4.7) reduces to a calculation of the deni-

vative of the elastic strain energy of the entire body.

At the risk of appearing somewhat pedantic, the author believes that it

might prove useful at this juncture to offer several observations with respect

to the fracture criterion (4.1) or (4.7). Application of the Griffith cri-

terion does not in any way imply the subsequent direction of crack propa-

gation, be it at some angle with respect to the plane of the original

crack, or along the direction of the original crack. There is nothing

within the criterion that can allow for this. The operation of performing

"-. the elastic strain energy derivative dU/da, by the definition of derivative,

requires the use of two incrementally differing crack sizes, for the same

crack geometry and loading, in the limit as the increment goes to zero.

This operation does not suggest that when fracture ensues the subsequent crack

extension must be along the original direction of the plane of the crack.

What it does provide is the value of the rate of change of the elastic

.2' ~8



strain energy of the entire body with respect to change of crack ' ngth

when the crack has its original size. Nothing more is stated o: implied.

Another point of interest deserves comment. Were the elastic energy

derivative to have the value zero, then the fracture criterion, as expressed

in the form given by Eq. (4.7), would lose its applicability. Is it

physically possible for dU/da to have the value zero? We know from com-

pliance type calculations that the elastic strain energy derivative can be

positive valued or negative valued under 'dead load' or 'fixed grips'

boundary constraints, respectively. If, furthermore, the derivative itself

is a continuous function of the crack length, then it must also have the

possibility of having a zero value as well. It is physically plausible

to imagine that this can occur if the rate of the elastic strain energy

increase with change of crack size associated with the deformation of the

body near the outer boundary, is just equal to the rate of elastic strain

energy decrease (release) associated with the relaxation of strains

around the crack.

..
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5. Calculation of the Elastic Strain Energy Derivative

Let U and U' denote the elastic strain energy of the infinite body

when the crack dimensions of the body are 2a and 2a', respectively, where

the difference Aa - (a'-a) is arbitrarily small and the crack geometry

and the boundary tractions are the same for each of the crack lengths.

The required strain energy derivative may be determined either by means of

a defining limit type of calculation

_.L ., ( U' )(5.1)
-a) a '-a da

or by formal differentiation of U. Both types of calculation have been

previously shown and discussed for the horizontal crack geometry [3,4,5].

Therefore only the latter of the two methods will be employed here since

it is the simpler of the two.

.,-. -Referring to Fig. 2, the elastic strain energy (per unit thickness)

of the plane region R, bound by the simple closed boundary curves A and
. A2 , is given by the integral

+ t _ + t + dxdy (5.2)
8,~ u(R) f f [txx ax yy 33 XY ay ax(.X-: R

By means of Green's theorem for a doubly connected domain [13] this

multiple integral over the region R can be transformed into line inte-

grals about the bounding contours A1 and A2 as

1 2U(R) - 1(A1) + 1(A 2 )

A2 ) ([txxux+t u ]dy-(t u +t u.]dx) . (5.3)

A 1. A2 * . 10



Other than being simple (non-self intersecting) nested closed curves that

enclose the crack, A1 and A2 are arbitrary otherwise. For convenience

they may be chosen such that A1 is a circle of radius r0>ja i centered at

the origin of the coordinates, while A2 coincides with the borders of the

crack [cf. Fig. 31. Since line integration along the crack borders re-

quire that dy be zero, while the boundary condition (2.3) must also hold,

we have immediately that

I(A2 ) = 0 . (5.4)

The line integral about the outer circular boundary can be written in the

form

1(AI) 2 r 0 f ([txxux+txyuy]r0 cose +[tyyuy +t sin)d 

-I (5.5)

The elastic strain energy of the infinite plane body can therefore be

expressed as the limit

U(-) li i(A 1 ) + I(A 2) - lim I(A) (5.6)rd0 ro- 1

Substitution of the series representations Eqs. (3.2) and (3.3) for the

stress and displacements into line integral (5.5) leads to the following

expression

1 2 16-u 0  n=r 0 n
"T (5.7)

where

A16
~ -!



F(6k~aK)- A1[A 4cos 2 8+A 5(Cos 2 cos2a +sinecosesin2a)]

+ A2[(A 4sin 2 9+A 5(sin~cos~sim2m -sin 2 cos2c)] 58

+ A 3[A 4sin~cos6 +A 5(cos 2 sin2m - sinecosecos2a)]

+ A3 [A 4sin6cos6 +A 5(cosesin6cos2a+sin 2 sin2a)]

G(9k~aK)- A1(A 2(A 7cos 29 +sinecosesin2e ]+A3 (A 6s inecos6+sinecosecos2el)

+ A 2(A2 (A 6sin 29 -sin 2 cos2S]-A 3(A 7siaftos6- sin 2 sin2ol)'

+ A 3(A.(A 6s inecose - sinecosecos2B]-A3[(A 7cos 2 -sinecosesin29])

+ A 3(A2 [A 7sin~cose +sin 2 sin2e]+A 3[A 6sin 2 8+sin 2ecos2e])

2I(A cosO8 A cscsasnsa ](A [cosecos26-2sinecosesin3e]

A A3 2cos6sin29 + 2sinecosecos3e])

1 2
+ (A sine +A (cosesin.2a -sin~cos2i)] 1(sinecos28 +2sin 8sin36]

+ A 3 2sin 2 cos3G]) (5.9)

+11tA sine+ +A(cosesin2a - sinecos2a)]I(A [2sinecosecos3e]

-A 3[2sinecosesin38 -cos~cos2e])

+-!Acs1A(oeo~ snsnc)( 2i 2 cs6
2(A4ce A5(sco2 sns2) I(2C~i cs

-A 3(2sin 29sin3e -sin~cos2e])

and

A,~ - (1+k)+(l-k)cos2a A 2=(1+k)-(l-k)cos2a

A 3 w (1-k)sin2ai A 4 = (-1)(l+k)

(5.10)

A i2(1-k) A6 ~1K

12



The functions H n(e;k,a,K) appearing in the integrand of (5.7) are com-

posed of sums and products of sine and cosine functions and have bound

values over the interval [-r,7]. Thus for any n and all values of 8 in the

interval it is always possible to find numbers M and N such that the func-

tions Hn satisfy the inequality IHl(;k,a,<) +.... +Hn(e;k,a,K)[<M for any

n >N. Futhermore, the sequence of positive coefficients (alr 0 approach

zero monotonically as n-'-. Under these circumstances it follows from the

Dirichlet test for convergence [14] that the infinite series appearing in

the integrand of Eq. (5.7) converges uniformly over [-ir]. The order of

integration with summation may therefore be interchanged, allowing expres-

sion (5.7), upon integration of the first two terms, to be reduced to

2 2

I(A) = - [k 2(l+)+2k(K-3)++l]1 16u

.22

16 [ k +2k(2--t))+l-(l-k )cos2i] (5.11)

+ a 2 2 2n H ( a

The infinite series of integrals converges to zero in the limit as r0 +m,

that is,

"( 2i n V l , , d m a 2 4
lim lim H (k, ,<) H *2(k, )"r-"nlr 0 -' H2 kc1

0 n L1k.o.f Hd8 0' '0
ITr

+ ..... 0 , (5.12)

since (a/r0) <1i, and H n(k,a,K) are finite numbers, the result of integration

of the bound functions H (6;k,a,K) on the interval [-,w.

.11
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It follows from Eqs. (5.6), (5.11) and (5.12), that the elastic strain

energy of an infinite plane body which has an inclined central crack and

which is load biaxially along its remote outer boundaries, can be expressed

2 as the sum

U() lir i(A) U0 + AU , (5.13)
r00

where

nU li r2 a ET(l+vh k2 (l+x)+2k(K-3)+x+li (5.14)
U0  ro 0 .L0 8E .'

represents the unbound elastic strain energy of the infinite body not having

a crack, and

a 2 -r(1+a 2  2 2
AU 8E [k +2k(2-K)+l-(l-k )cos2t] (5.15)

iE the change of the elastic strain energy associated with insertion of a

crack of length 2a inclined at an angle a relative to direction of the

tensile loading a.

When the crack is horizontally oriented, a = Tr/2, Eq. (5.15) reduces to

the previously obtained form [ 3]

AU a 2r(l+v)a 2l+k(2-c) ] (5.16)

For the crack with a vertical orientation, a- 0, and biaxial loading, the

form for AU should be identical to Eq. (5.16) because of the symmetry of

the two situations. Thus for a -0, letting (+k)C- r so that a - r/(+k)

-(+k')r, substitution in Eq. (5.15) recovers the form given by Eq. (5.16),

e.g., for k>0,

/ 14



22

(1) ir(+v) a 2

(a= 0) 8E [2k 2 +2k(2-K)]

2 2
= T(1+) [ + k'(2-)] , (5.17)

4E

where r is now the tensile load in the direction perpendicular to the plane

of the crack and k'r is the load parallel to the crack.

It is apparent from Eq. (5.15) that the elastic energy change AU can

have the value zero when the horizontal load, the crack orientation and

the Poisson ratio are such that the condition

22
k +2k(2-tc) +l-(l-k2)cos 2a = 0 (5.18)

is satisfied. There are several combinations of values of the parameters

k, a, and v, that will satisfy this condition. Among the more obvious are

S= 2  , k=<1

AU - 0 : (5.19)
a 0 k k=0

For the first case the crack is horizontal and the horizontal load

parameter has values that depend on the Poisson ratio of the material,

as shown in Table i.

TABLE 1. Values of Load Biaxiality and Poisson's Ratio for Which AU - 0
When the Crack is Horizontal (a=.r/2).

Plane Stress Plane Strain

Poisson Ratio v I Load Biaxiality k Poisson Ratio v Load Biaxiality k

*0.25 5.00 0.25 *

0.30 13.00 0.30 -5.00

0.33 * 0.35 -2.50

0.40 -7.00 0.40 -1.67

0.45 -4.14 0.45 -1.25

For no finite values of k.

15



When the Poisson's ratio has the particular values v 0.33 for plane

stress, and v - 0.25 for plane strain, the elastic strain energy change LU

associated with insertion of the crack cannot have the value zero, regard-

less of the value of the load biaxiality k.

For the latter case, AU - 0 when k - 0 and a - 0, that is, when the

applied load is uniaxial tension a and the crack is oriented parallel to
'po

the direction of this tensile load. If we look upon this as the limit

situation

lim
a-• (AU) = 0 (5.20)
k-0J

% then for small values of a and k, representing crack inclinations close

to the vertical direction and horizontal loads of small magnitudes, the

values for AU will be correspondingly small.

For any of the circumstances for which the parameters k, a, v are

p- collectively such as to satisfy Eq. (5.18), insertion of the crack (or,

mathematically speaking, a slit) into the biaxially loaded plane body

will not cause any change of the total elastic strain energy of that body.
Hence, as U0 in Eq. (5.13) is independent of the crack dimension, dU/da

- d(U0 +LU)da - 0 in Eq. (4.7), causing the Griffith fracture criterion,
'.

as expressed by this form, to become inapplicable.

'p.

16
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6. The Critical or Fracture Load

The critical tensile load, a , is obtained by application of the Grif-

fith crack instability criterion (4.7), where 7 = 4ya is the crack surface

energy, and expressions (5.13)-(5.15) represent the total elastic strain

energy of the infinite body. Thus the condition for the stationary value

of the potential energy of the system

d dPU~]Q 61
d- (7-U(-)] A- [4ya-(U 0+AU)]= 0 (6.1)

leads to the following expression for the critical tensile load for an

inclined crack

l 6Ey 1 }1/2

c 16Y 1 22 (6.2)
i7wa(l+v) [k +2k(2-K)+l-(l-k )cos2a 6

In addition to the crack size, the values of the elastic modulus and the

crack surface energy density, the fracture load according to this criterion

is also governed by three additional parameters, namely, the horizontal

load (or load biaxiality), the crack orientation and the Poisson ratio of

the material,

a = f(aa,k,v,E,y) . (6.3)

When the parameter values are such that Eq. (5.18) holds, z as

given by Eq. (6.2) appears to become unbounded in value. Actually this

corresponds to the condition that AU 0, with corresponding inappli-

cability of the fracture criterion.
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Figures 4 to 17 illustrate graphs of the expressions

i a 1I/2 1  1 1/2

c(l6Ey) 2 (3v- 1 2 (plane stress) (6.4)

and

(A1/2 1 1/2
ac (4E 22 (plane strain) , (6.5)

\ / (l+v)[k 2+2k(4v-l)+l-(l-k 2)cos2a]l

for different values of the load biaxiality, the crack orientation and the

Poisson ratio of the material. Symmetry considerations with respect to the

vertical tensile load direction reduce consideration of the crack orienta-

tions to the range 00 < a < 900.

When the crack is horizontally oriented, a = 7/2, the fracture stress

variation with load biaxiality is monotonic for all Poisson ratio values

for both plane stress and plane strain, as shown by Figures 4 and 8. There

is a qualitative change of the variation of a with k as the Poisson ratioc

value varies from v - 0.25 to v - 0.45. For plane stress, a increases ar

k increases in the tensile sense for values of v<0.33, while it decreases

as k increases in the tensile sense whenv>0.33. A similar pattern exists

for plane strain, except that the dividing value for the Poisson ratio is

now v - 0.25. Referring to Table 1, for v = 0.33 and plane stress, or v -

0.25 and plane starin, the elastic strain energy associated with insertion

of the crack, AU, will have a non-zero value for all values of k. This is

also shown in Figures 4 and 8. Table 1 also lists the collective sets of

values of k and v at which AU - 0. For these sets of values the denomin-

ator of Eq. (6.2) has the value zero, giving the apparency of a -c--. This

is illustrated, for example, in Fig. 8 for v - 0.45 with the load biaxiality

approaching the value k - -1.25.
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As the crack inclination angle is decreased toward the vertical orien-

tation, the curves of Figures 5-7, 9-11 and 12-17 show a peak effect devel-

oping in the vicinity of uniaxial loading, k = 0, becoming increasingly

pronounced as the crack angle gets smaller and approaches a direction paral-

lel to the tensile load a. When the applied load is uniaxial tension and

the crack angle is parallel to the load direction, the limit condition

(5.20) holds and, correspondingly, the fracture load a - - implying that

it is not possible to cause fracture under these circumstances. It follows,

therefore, that for crack orientations that are close to being vertical

and with load biaxiality small, giving a loading condition that is almost

uniaxial tension, the quantity 4U will be small. Correspondingly the value

for the fracture stress, a becomes comparatively large [cf. Eqs. (5.15)

and (6.2)]. This peak effect appears to be in accord with the expectation

that it becomes more difficult to effect fracture (i.e., larger values for

c ) when the crack is aligned almost parallel to the tensile vertical loadc

direction while the horizontal load is zero, or close to zero. According

to Fig. 17, this effect is most pronounced for a material with a high Poisson

ratio value in a condition of plane strain.

Figures 12-17 illustrate that at the particular load biaxiality of

equal tension-tension, i.e., k = 1.0, the orientation of the crack is im-

material to the value of the critical tensile load. This is the case for

all values of the Poisson ratio for both plane stress and plane strain.

The difference in values of the fracture stress between plane stress

and plane strain conditions (sheet thickness) are greatest for the hori-

zontal crack orientation as the load biaxiality intensifies in tension

for plane stress and in compression for plane strain.
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For each crack orientation, for both plane stress and plane strain,

there is a corresponding horizontal compressive load, ranging between

-0.5 < k < 0, at which the fracture stress has the same value for all

values of the Poisson ratio, as shown in Figs. 4-11. To the left of this

cross-over point a cincreases as the value of v increases, whereas to the

right of this point uc decreases as the value of " increases.
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7. Fracture Stress Test Data For the Horizontally Oriented Crack

Ever since Griffith's first tests measuring the breaking stress of

7 cracked glass tubes in 1921, there have been only a few other fracture

test programs in which the loads have been applied biaxially [6-9].

Moreover, in all of these tests the crack orientations were parallel to

the horizontally applied load, i.e., a = 7/2. The fracture load test data

obtained from these tests, although previously reported, are collected

and reproduced here because they provide some measure against which to

judge qualitatively the results of the analysis, as indicated by Figures

4 and 8 for the horizontal crack orientation. The tests were performed

on glass, several aluminum alloys and several plastics.

Glass [9]

The test specimens consisted of cylindrical glass tubes having a

0.02 in. wall thickness, and inner diameters that ranged from 0.59 ia.

to 0.74 in. The tubes were cracked along the axial direction, annealed

and broken by internal pressure and end loading. The values of the elas-

tic modulus, Poisson ratio and surface energy density for the glass were

measured (directly and indirectly) to be: E = 9.01xO6 psi, . = 0.25,

y = 3.xlO- 3 psi. The load biaxiality that was attained in these tests

ranged only from k = -0.9 to k = 0.5.

Along side of the test results shown in Fig. 18 are Griffith's 1921

calculation of the critical stress

(2cE",1/ (1921) (7.1)
c7'

and his subsequently revised calculation (for plane stress)
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rr raw ( - 1924) (7.2)-

,I l/2

" In both calculations 7 is independent of the load biaxiality, and in thec

second calculation it is also independent of the Poisson ratio of the

material. * Also shown is a plot of Eq. (6.2) over the test range of the

load biaxialitv, which for a = -/2 and plane stress becomes

8E-,1 1/2
c = --7- k(3v-l)+l+ j 3

In the absence of any reason to think otherwise, it would be easy

to interpret this test data as indicating a null effect for the load biax-

ialit on the critical stress, in agreement with Griffith's calculations,

qualitatively at least. While it would be difficult to draw any conclu-

sions trom the limited data shown in Fig. 18, it appears nevertheless that

': .q. (7.3) comes closer to fitting this data than do either of the Griffith

formulas.

Aluminum Alloys [6,7]

Plane stress fracture toughness tests from K under biaxial loading

-conducted on 7075-T6, 2024 T-3 and 6061-T4 aluminum alloys. Specially

designed sheet speciemns were used in a loading rig that was designed to

apply loading independently in two directions. The sDecimens were 0.063

in. in thickness and had crack length to width ration, (2a/W), ranging

bT etween 0.40 to 0.50. The Poisson ratio of these iloys is approximately

0.30. The critical tensile stress c was calculated from the reported K

critical discussion of these calculations may be found in Ref. [3].
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values by means of the expression

K
c (7.4)

where

f [1 _ (O.1)(2a) + 13 1.20

is the finite width correction factor used in the test program.

7075-T6

The results o: two test series for this alloy are shown by Figures

19 and 20, where the load biaxiality ranged from k - 0 to k - 1.8.

Higher k values could not be tested successfully because the horizontal

.., loading tabs of the sheet specimens were pulled off prior to unstable

fracture, thus releasing the biaxial constraint. Both series show a

steady increase of the fracture stress with increase in the magnitude

of the horizontal tensile loading up to k - 1.5, dropping off somewhat at

the limit horizontal constraint value for tab pull out at k - 1.8.

Successful biaxial fracture testing at higher tensile constraint loading

beyond the k - 1.8 limit would require the use of thicker sheet specimens.

The difference in the sets of values shown by Figures 19 and 20 is attributed

-to the anisotropy induced by the orocessing of the material.

2024T-3

Figures 21 and 22 show the results of two test series for this alloy.

For this more ductile alloy the load biaxiality was limited to the maximum

'2 value of k = 1.5 because of loss occasioned by horizontal tab pull out.

Both series show an increase of the fracture stress as k increases k 0.0
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to 0.5. The fracture load then decreases to a value at k - 1.5 approxi-

mately equal to the value of a at k = 0, i.e., at uniaxial tensile

loading.

6061-T4

The one series of test results for this alloy is shown by Fig. 23.

The maximum horizontal constraint that could be sustained successfully

by this alloy at 0.063 in. sheet thickness was only k - 1.25. The pat-

tern of variation of a versus k is similar to that for 2024-T3, with a
c

peak value for a at k - 0.5, followed by a decrease to a level at k-1.25

approximately equal to the value for a at k - 0.
c

An explanation for the appearance of the peak values for a at k -[ c
0.5 load biaxiality for the 2024-T3 and 6061-T4 tests could not be given.

Since horizontal tab failures (pull out) prior to fracture did occur at

the higher k values, it was conjectured that possibly the horizontal tabs

of the test specimens for the more ductile alloys began to yield prior

to the onset of unstable fracture, thus causing partial loss of the hori-

zontal constraint. However this could not be verified by direct experi-

mental observation.

Plastics [6,7,8]

Three test series were conducted on polyvinylchloride, PVC, and

polymethylmethacrylate, PMMA, (plexiglass). Two were run at The George

Washington University using the same biaxial load set-up and specimen

design as for the aluminum series, while the other was performed at the

Imperial College of Technology, London. The test specimen thicknesses

were 0.25 in. and 0.16 in. The Poisson ratio for these plastics range

24
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approximately between 0.40-0.45. The 0.25 in. thickness specimens gave

the appearance of plane strain fracture conditions.

PVC

The fracture test results for this plastic is shown by Fig. 24. The

fracture stress decreases steadily as the load biaxiality is increased in

tension from k = 0 to k = 1.5

PMMA

The two sets of test results for PMMA are shown by Figures 25 and

26. Both show a wide degree of scatter of the data. However the linear

regression lines for both sets show a c to be decreasing over the range

of load biaxiality from k = -0.50 to k = 2.75, with the regression lines

almost parallel.

25



A- 8. Conclusions

The test data that is available for horizoncally oriented cracks shows

rather convincingly that the critical tensile load is influenced by the

presence of the horizontal load and, also, by the Poisson ratio of the

material. Furthermore, the nature of the dependency is, qualitatively

speaking, in agreement with the results of the critical load calculation

illustrated by Figures 4 and 8.

It is apparent from the two term nature of the Griffith global

fracture criterion, Eqs. (4.7) or (6.1), that the criterion loses its

applicability for those circumstances in which the elastic strain energy of

the entire body can remain unaltered as the crack is extended, i.e., dU/da-

0. It is not difficult to imagine a physcially plausible situation where

this can take place.

Moreover, in application of the fracture criterion for determination

of the fracture stress for an inclined crack in a biaxially loaded plane

infinite body, calculation of the elastic strain energy of the body also

reveals that there are conditions for the load biaxiality, crack

orientation and material Poisson ratio at which the derivative of the total

strain energy with respect to crack size can have the value zero. This

would appear to indicate that the Griffith global fracture criteria is of

limited generality, even for entirely elastic material behavior throughout

the body.
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Fig. 1I Crack geometry and boundary tractions.
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Fig. 2 - Bound plane region R enclosing the crack.
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Fig. 18 - Fracture load for Glass-plane stress.
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Fig. 24 - Fracture load for PVC-plane strain.
(George Washington Univ. tests)
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Fig. 25 - Fracture toughness for PMMA-plane strain.
(Imperial College of Technology tests)
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Fig. 26 - Fracture load for PMMA-piane strain.

(George Washington Univ. tests)
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